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M O D E L I N G  O F  T H E  R E T U R N  O F  T U R B U L E N C E  

T O  A N  I S O T R O P I C  S T A T E  

E. P. Sukhovich UDC 532.517.4 

The s tudy  models  a correlation that involves pressure oscillations and  that determines the return of  

turbulence to an isotropic state. The modeling is carried out via a direct comparison of  approximations put  

f o rward  previously  with correlations result ing f rom a numer ica l  calculat ion o f  the t i m e - d e p e n d e n t  

N a v i e r - S t o k e s  equations. The form of the approximations and the empirical coefficients are determined. 

The results can be employed for  constructing new turbulence models of  the second order. 

Introduction. The solution of applied problems of hydrodynamics and heat and mass transfer in turbulent 

fluid flows requires that the components of the Reynolds stress tensor and the vector of the heat flux be ascertained. 

Generally, one or another turbulence model is used to this end. The first-generation turbulence models relied on 

the concept of the turbulent viscosity, which was obtained from empirical equations. Later, wide popularity was 

gained by the K - e  model, which also relied on the concept of the turbulent viscosity, whose functional dependence 

on the turbulent kinetic energy and the dissipation rate follows from a relation that is set up so that its dimension 

matches that of the viscosity. Detailed investigations of the first-generation turbulence models revealed an essential 

shortcoming in them, viz., nonuniversality. In other words, appropriate model coefficients must be selected for 

predicting each new type of flow in order that the predicted results are in favorable agreement with pertinent 

experimental data. The second-generation models aim at developing a universal turbulence model. A way to 

construct it was proposed in [1 ] in the early 70s. The essence of this approach lies in that the Reynolds stresses 

and the heat fluxes should be obtained from exact equations for second-order single-point moments: 

DRi i 
Dt = Fij + Pij + d~ij - 2eq + D~j, (1) 

DF i 
Dt - F(r) i + P(Qi + tl)(~)i - e(r)i + D(Qi" (2) 

Accoroding to the authors' plan, use of Eqs. (1) and (2) will permit a conversion from intuitive modeling 

based on some physical analogies to modeling based on exact equations for second-order single-point moments. 

Furthermore, employment of exact equations and physically justified approximations for unknown correlations is 

a reliable basis for obtaining universal equations that can be used with confidence for describing turbulent transfer. 

Equations (1) and (2) accurately describe convective transfer and generation processes. The term 

containing oscillations of the external force depends on its type. For stratified flows, it is determined exactly. 

Dissipation and diffusion terms and correlations containing pressure oscillations should be modeled, since they 

involve unknown correlations of higher order. The state of studies in this direction is as follows. 

Study [1 ] generalized the results of investigations conducted before 1974 and advanced a complete 

turbulence model of the second order that, with some modifications, was used widely in numerical calculations of 

turbulent flows in the next 20 years. The correlation @ii was modeled using the earlier Rott model and a model 

devised by then for describing the interaction of the mean shear with velocity oscillations. Dissipation processes 

were determined on the basis of the Kolmogorov hypothesis of local isotropy of the velocity field. Diffusion terms 
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were modeled via relations based on the hypothesis that the turbulent diffusion is of a gradient nature. Subsequent 

studies [2-5 ] modeled the correlation ~ i j  using a method of invariant modeling and realizability conditions for a 

turbulence model of the second order. Study [6 ] compared experimental data with results predicted using models 

for the correlation ~ i j  and Dij  worked out by then. Study [7 ] proposed a model for the correlation ~(r)i, and study 

[8 ] analyzed the efficiency of various turbulence models of the second order and described the merits and demerits 

of individual models and of turbulence models of the second order as a whole. 

Turbulence models of the second order were tested in numerical calculations of jet flows, boundary-layer 

flows, various-geometry duct flows, and stratified and swirling flows. The calculated results demonstrated that such 

models are fairly universal and allow the description of a variety of effects falling outside the scope of the K - e  

model and other models based on the concept of the turbulent viscosity. It can be noted here that the turbulence 

models of the second order can describe the effect of buoyant forces on the flow structure, the influence of the 

streamline curvature on the boundary-layer flow, and the appearance of secondary flows in rectangular ducts. 

Simultaneously, drawbacks of the turbulence models of the second order were found. An analysis of the latter 

showed that advance in this area is linked to the development of novel approaches to the methodology of identifying 

the form of approximate expressions for unknown correlations and the ways of determining the system of empirical 

coefficients entering the approximate expressions. It follows from published works that the most difficult to model 

is the correlation of strain rates with pressure oscillations ~ij that characterizes the redistribution of oscillatory- 
motion energy among the components of the Reynolds stress tensor. 

The current study sought to determine the coefficients and the form of approximations for the components 

of the correlation ~ i j  that describes the return of turbulence to an isotropic state. Particular emphasis was placed 

on the special features of this process in the strongly anisotropic turbulence frequently encountered in stratified, 

rotational, and magnetohydrodynamic flows. As distinct from studies published previously, the form of the 

approximation and the empirical coefficients were determined via a direct comparison of the general form of the 

approximation for the sought correlation with numerical results for the time-dependent Navier-Stokes equations. 

The primary focus was on searching for methods of correctly allowing for all chief factors affecting the return of 

turbulence to an isotropic state. 

1. Methods of Modeling the Correlation ~ij. When modeled, this correlation is generally represented as a 

sum of three terms: 

tl)q : t~(1)/] 4- tI~(2)q 4- (I~(3)q , 

where tI~(1)i j depends only on the interaction of the velocity oscillations and reflect the approach of the field of 

velocity oscillations to an isotropic state, CI~(2)i./relates to the interaction of the mean velocity shear with the velocity 

oscillations, and ~'(3)ij accounts for the wall effect. 

The term ~(1) i ]  is a symmetric nondivergent tensor. In isotropic turbulence, it is equal to zero. In anisotropic 

turbulence, ~(1)ij defines the energy transfer among oscillation components. The degree of turbulence anisotropy 

can be characterized with the aid of the tensor of Reynolds stress anisotropy bi] = ( R i y / 2 K )  - 1/3c~i] and the tensor 

of the anisotropy of the dissipation rate for Reynolds stresses di] = (e i ] /e )  - 1/3c~i. i. The quantities written also are 

symmetric tensors of the second rank and are equal to zero in isotropic turbulence. For anisotropic turbulence 

developing in a flow with no velocity shear, the turbulent-energy generation is equal to zero, and the term of the 

energy redistribution among oscillation components is ~ij = ~(l)ij. In this case, the rate of energy transfer among 

the components of the Reynolds stresses should increase with bi.i. Therefore it is reasonable to suppose that the 
correlation defining the approach of turbulence to an isotropic state can be represented as 

e = F ( b i t )  . 

Study [5 ] showed that the expression for qb(l) i  j reduces to a relatively simple form quadratic in bij: 

(1)(1) ij + C2 (b~+ 2 ) 
e = - Clb( i  -3 llc)ij ' (3) 
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where, in conformity with the Cayley-Hamil ton theorem, the equation coefficients can be expressed as a power 

series: 

C a- -  Cao+ Ca I H +  Ca211I. (4) 

Attention is turned next to a special feature of the approximation put forward in [5 ]. The general form of 

approximation (3) is simple; however, the coefficients entering expression (3) are specified via a series. Thus, all 

the complications of modeling the return of turbulence to an isotropic state are associated precisely with 

determination of the coefficients of series (4). 
Published studies generally employ simpler approximations that can be regarded as special cases of relation 

(3): 

model [1 ]: Ct = 3.0, C2 = 0; 

model [2]: C1 =fl,  C2 = 0; 
model [3 ]: Ci -- (3.4 + 1.8P/e), C2 = 4.2; 

Re t = 4 9 ~ "  F =  1 + 9H + 27111, 

As will be demonstrated below, the coefficients of the approximation for ~O)ij reported in [1-3 ] 

inadequately describe the distributions of this correlation obtained in [9 ] using the method of direct numerical 

simulation of the time-dependent Navier-Stokes equations. Therefore, practical use of the model represented by 

Eqs. (3) and (4) calls for a more accurate determinination of the coefficients and the form of their dependence on 

the invariants 1I and II1. 
2. Initial Data for Approximating ~0)iJ" Basically, there are three ways of obtaining the empirical 

coefficients, viz.: 

1) the use of experimental data; 
2) determination of the empirical coefficients and the form of the approximations for the unknown 

correlations by comparing measurement data with results of numerical calculations carried out using various 

approximation formulas for different values of the coefficients; 
3) application of results of a direct numerical simulation for the time-dependent Navier-Stokes equations. 

Experimental data are reviewed in [10, 11 ]. To date, all components of the Reynolds stress, the dissipation 

rate, the convection terms, the generation of turbulent kinetic energy, and the diffusion terms have been measured. 

The components of the tensor dissipative function and the terms containing pressure oscillations were not 

determined for lack of appropriate measuring procedures. As a consequence, only the difference of terms 

( ~ i j -  2eij) can be obtained from results for uniform turbulence. The quantity apt~ was determined on the 
assumption that the dissipation process is isotropic. The coefficients thus established were tested by comparing 

numerical results with experimental data for various turbulent flows. Results of calculations showed [8 ] that the 

approximations obtained for the dissipation terms and the terms involving the correlations of pressure oscillations 

cannot be recognized as satisfactory. 
Numerous attemps to indirectly model unknown correlations by selecting empirical coefficients and to 

subsequently compare experimental data for averaged quantities with numerical results were not successful, which 

was corroborated by materials submitted to the Stanford Conference of 1981. In this connection, it is reasonable 

to follow the third path, viz., to utilize results of a direct numerical simulation for approximating unknown 

correlations. 
Studies [9, 11, 12] reported results of a direct numerical simulation (DNS) of the time-dependent 

Navier-Stokes equations for a number of simple two-dimensional flows at moderate turbulent Reynolds numbers 

(Ret = 180 and 395). Fairly dense grids (2.106 and 4.106 points) were used in the calculations, which allowed 
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Fig. 1. DNS data for components  of the tensor  ~ O ) i / / e :  1) ~ O ) x x / e ,  2) 

~ ( 1 ) y y / e .  

resolution of all scales essential to describing turbulence. The  DNS results afford information on the s t ructure  of 

turbulence that cannot  be established experimentally.  From this standpoint ,  DNS results are a valuable tool for  

constructing semiempirical turbulence models. 

3. Results of Modeling the Process  of Return to Isotropy.  The  coefficients Ci in approximations (3) and  

(4) are de termined using DNS results [9 ]. Equation (3) in a Cartesian system takes the form 

t:I:~(1)xxe = -- C l b x x  + C2 bxx + bxy + , (5)  

e = - C 1 byy y + bxy + . (6) 

Figure 1 shows the distributions of ~ O ) x x / e  and qb0)yy/e obtained in [9 ] for a s teady-s ta te  flow in a plane 

duct. It should be noted that,  in isotropic turbulence,  invariant / /  is equal to zero, and  the energy  t ransfe r  among 

oscillation components  ceases, i.e., ~ ( l ) x x ( e )  and ~ ( 1 ) y y / e  are also equal to zero. Less evident is the behavior  of 

these functions in the case of strongly anisotropic turbulence,  where the absolute value of invariant  H is larger  than  

the values observed in the wall region of the boundary  layer. To elucidate this question, we examine a diagram of 

turbulence states (see Fig. 2). It was analyzed for the first time in [13 ], where it was shown that all turbulence 

states should be within the outline depicted in the figure. Point I corresponds to isotropic turbulence.  The  basic 

parameters  in an isotropic state have the following values: bij = O, H = O, 111 = 0, and F = 1. Point 2 corresponds  

to one-dimensional  turbulence for which H = - 1 / 3 ,  111 = 2/27,  and F = 0. Curves 1-2 and 1-3 are def ined by the 

equation 1112 + 4 H 3 / 2 7  -- 0 and correspond to axisymmetr ic  turbulence. Straight line 2-3 is descr ibed by the 

equation F = 1 + 9 H + 27 111 = 0 and contains a combination of two-dimensional  states of turbulence.  T h e  points 

in Fig. 2 reflect states of turbulence for a developed flow in a plane-parallel  duct at various distances from the wall. 

Near  the wall, the normal  component  of velocity oscillations is small, and therefore  the points lie near  a s traight  

line descr ib ing two-dimensional  turbulence.  With increasing dis tance from the wall, the  s ta te  of turbulence 

approaches point 2. At Y+ = 3.5, the state of turbulence is closest to one-dimensional .  At larger  distances from the 

wall, the turbulence approaches an isotropic state. It should be noted that the one-dimensional  state of turbulence 

is a hypothetical  state with only one component of velocity oscillations. As a result,  the energy t ransfer  among the 

components  of the Reynolds  stress tensor  ceases, i.e., r "-~ O. O n  the other  hand,  the dissipation processes proceed 

when a one-dimensional  state is approached,  i.e., the dissipation rate is o ther  than zero in this case. Hence,  

q ) O ) i j / e  .--, 0 and ~ ( 2 ) i / / e - - ,  0 as H-- ,  - 1 / 3 .  Thus,  the distributions of ~ O ) x x / e  and ~(1)yy/e plotted in Fig. 1 

should tend to zero when invariant 11 approaches its limiting value, equal to - 1 /3 ,  and invariant 111 -.., 2 /27 .  Using 

this condition, from Eqs. (5) and (6) we derive an additional relation for the sought coefficients: 

Cl0=-~Cll H- C12= ~ C20-~C21 -t- C22 �9 (7) 
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Fig. 2. Diagram of states of turbulence: 1) the point of an isotropic state of 

turbulence; 2) one-dimensional  turbulence; straight line 2-3 corresponds to 

two-dimensional turbulence; curves 1-2 and 1-3, to axisymmetr ic  turbulence;  

dots denote  DNS data. 

It should be pointed out that a similar result was obtained in [5] by analyzing the realizabili ty conditions of a 

turbulence model of the second order.  A model is regarded as realizable if it guarantees  that the quantities that 

should be nonnegative,  for example,  Raa, will always remain nonnegative,  and the absolute values of the correlat ion 

coefficients will not be larger than unity. Study [5 ] considered a simpler case of Eq. (4) where  the coefficients C1 

and C2 were assumed to be constants and,  from the realizability conditions, the relation C1 -- C2/3 was obtained,  

which for these conditions follows from expression (7). 

The  coefficients CaB were identified using Eqs. (4)-(7) and DNS data (Fig. 1). Processing of the DNS data 

yielded the following values of the sought coefficients: 

Clo = 5.48 ; Cli  = 38.5 ; C12 = 115.6 ; C13 = 0 ; 

C2o = 3.6 ; C2~ = C22 = C23 = O. 

The  mean error  in describing the distributions of (~(1)xx/g. a n d  dPO)yy/e using the written coefficients is 2.2 %. The  

results of modeling the return of turbulence to an isotropic state can be written in a simpler form: 

(I~(1)ij = -- Clbij + C 2 b + ~ IIc5 E (8) 

C 1 = C I o f + C I I / F ,  C2=2C10f, C l 0 f =  1.2, C l l / =  4 .28 ,  F =  1 + 9 H + 2 7 I I I .  

Thus,  only  the two independent  empirical coefficients Cloy' and C1 if are needed to describe the re turn  to 

isotropy. An analysis  of the calculation results revealed that use of the coefficient C1 as a function of the invariant 

F permits a correct  description of the distributions of ~(l)xx/e and ~(1)yy/e i l lustrated in Fig. 1 and introduction 

of the second term in relation (8) allows for differences between the components  of the tensor  dPO)ij/e. 
Figure 3 compares DNS data with results predicted for ~(1)ij from Eq. (8) and from models of [1-3 ]. Given 

below are the mean  errors  in the description of the DNS data (6 = V~O)ij/P) using relations and empirical 

coefficients of [1-3 ]: 

the model of Launder,  Reece, and Rodi [1 ]: 6 = 2 4 ~ ;  

the model of Shih and Lumley [2 ]: 6 = 55~ 
the model of Speziale, Sarkar  and Gatski 13 ]: 6 = 58 ~ ;  

model (8): ~ = 3%.  

It is clear from Fig. 3 that the turbulence models of [I-3 ] produce especially large errors in describing the 

wall region of the boundary  layer for Y+ < 60. To obtain acceptable results in this region, in 11 ] it was assumed 
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Fig. 3. Comparison of calculation results with DNS data for tyhe components 

dP(1)xx/e (a), ~(1)yy/e (b), and ~(1)xy/e (c): 1) equation of [3]; 2) [2]; 3) 

[1 ]; 4) calculation from Eq. (8); 5) DNS data. 

that the wall exerts a strong influence on the energy redistribution via pressure oscillations, and a procedure for 

taking this influence into account with the aid of special wall functions was devised. However, the DNS results did 

not confirm this assumption, and its authors rejected it in [4]. Subsequent studies [2, 3] did not employ wall 

functions. Study [3 ] suggested that the coefficient C1 can depend on the relation of the generation of turbulent 

kinetic energy to the dissipation rate. However, in no way does such a connection follow from expressions (3) and 

(4). Furthermore, as is seen from Fig. 3, the accuracy of describing the return of turbulence to an isotropic state 

using equations of [3 ] is not satisfactory, especially in the wall region of the boundary layer. 

The data presented indicate that the proposed model allows a fairly accurate calculation of the distributions 

of the correlation that describes the approach of turbulence to an isotropic state. It can be assumed that the high 

accuracy in describing all three distributions plotted in Fig. 3 adequately reflects the mechanism of the return of 

turbulence to isotropy not only for a special case - a developed flow in a plane-parallel duct - but also for other 

flows. To verify this assumption, the proposed model should be compared with results of a direct numerical 

simulation of rotational and some other flows. We did not manage to do this here because the published information 

is incomplete. 

A comparison of DNS data with results predicted using model (8) demonstrates that the proposed model 

adequately describes the approach of turbulence to an isotropic state in the wall region of flow, where the turbulence 

is very close to a two-dimensional state, i.e., is highly anisotropic. Such turbulence is frequently observed in 

stratified and rotational flows. Previously the description of the return of highly anisotropic turbulence to an 

isotropic state with a sufficient degree of detail was not successful. Model (8) will presumably permit this. 

Generally, in solving Eq. (1) the boundary conditions for Rij have to be specified not on the wall but near 

it instead, for example, at Y+ = 30. To define these conditions, additional conditions and constants are introduced, 

which complicates the problem. It is seen from Fig. 3 that model (8) is applicable throughout the boundary layer, 

including the immediate vicinity of the wall with Y+ < 30, which corresponds to a laminar sublayer  and a 

transitional region. If the approximations for eij and Dq, just like relation (8), will be applicable to Y+ --, 0, then 

the specification of the boundary conditions for Eq. (1) will be simplified. 

It should be noted that, before the results of a direct numerical simulation appeared, obtaining a unique 

form of the dependence of the coefficients C1 and C2 on the scalar invariants was barely practicable. This is 

explained by the fact that approximate expressions that contained a large number empirical coefficients were written 

first for all the unknown correlations ~ij, eij, and Dij. Then, parametric calculations of the flow, for which reliable 

experimental data as to the mean flow parameters and lhc Reynolds stresses were available, were performed. In 
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the calculations the coefficients were selected such that the results were in favorable agreement with the 

experimental data. The errors stemming from incorrect writing of an approximate expression, for example, for the 

term ~(1)ii, could always be compensated by the selection of the coefficients in the approximations for other 
correlations. 

The appearance of DNS data for a duct flow, a boundary-layer flow, and stratified and rotational flows 
radically changes the situation, since they can be used to compare each correlation or a component of it with relevant 

approximate relations substant iated theoretically. Under  these conditions, the probability of obtaining an 

unambiguous result increases by many times. To a certain extent the current study validates this assertion. 

Thus, results of a direct numerical simulation are reasonable to use to develop turbulence models of the 
second order. These models are much simpler, require a hundredth the time, and can be applied to problems with 

an intricate flow geometry. Based on DNS data a relation is derived that approximates the transition of initially 

anisotropic turbulence to an isotropic state, although the approximation is somewhat more complex than the 

relations proposed previously, since it involves the second and third invariants of the tensor of Reynolds stress 
anisotropy. Utilization of the developed approximation improves by many times the accuracy in describing the 

approach of turbulence to an isotropic state in the wall region of flow and in flows with a high degree of turbulence 

anisotropy. The results of the study are suitable for numerical calculations based on turbulence models of the second 
order. 

N O T A T I O N  

Ri] = (uiuj), single-point correlation of velocity oscillations; Fij = (uJj)  and F(r)i = Orfi), generation terms due 
to the effect of the external force; Pii = - ( R i k U k j  + RikUki), term of generation of Reynolds stresses by the mean- 

velocity gradient; Po:)i = --(I'kUi,k + RikT, k), term of generation of heat fluxes by the mean-veloci ty and 

temperature gradients; Oil = ((pui,j) + (puAi)) /p,  term containing the correlations of strain rates with pressure 

oscillations; eij = v(Ui,kUk,j) , dissipation term; Dij = [(uiujuk) 4- ((PUi)t~ik 4-(puj)<~ik) - -v (u iu j ) , k] ,k ,  diffusion term; 

dP(~r)i, e(~)i, and D(r)i,  corresponding terms in the equation for heat fluxes; ui, z, fi, and p, oscillations of the velocity, 
temperature, external force, and pressure; p, density; v, kinematic viscosity; 6ij, Kronecker symbol; angle brackets 

denote averaging; a comma in front of a subscript denotes differentiation; K --- R i i / 2  , turbulent kinetic energy; e -- 

eii , rate of dissipation of K; b 2 = bikbk/; b 3 = bikbkmbmi; 11 and 111, scalar invariants: / /  = --bikbki/2 , 111 = 

bikblcmbmi/3; F, scalar invariant determining the degree of turbulence anisotropy; r ~(1)yy, and OO)xy, 

components of the tensor ~(1)iy; Y+ = yuo /v ,  dimensionless distance from the wall; uo, dynamic velocity on the 
wall. 
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